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The Lorentzian approximation of (B15b) needed in 
§ 4 i s  

• ~ ( x ) = ( l + 9 x 2 / 1 6 )  -1. (B16) 

For o'2(F2) the same expressions are obtained with 
Pl in place of  p2. 

Finally, if t is a segment in the u direction, the vector 
tu is transformed into t U ' - - t  U ' u ' =  t'u'. Then the 
transformation t' of  t is 

t ' = t / p . .  (C3)  

APPENDIX C 
Transformation of the ellipsoid into a sphere 

of unit radius 

Remember here some mathematical relations used 
above (see also Becket & Coppens, 1975). If the 
equation of  an ellipsoidal surface in the system (c,) 
of its principal axes is Y.i 2 2 z , / r ,  = 1 and the transforma- 
tion z, = riz[ is performed then this equation become 

t2 ~ zi = 1, which represents a sphere of unit radius. 
By this transformation any unit vector u = Y~ u,ci is 
transformed into the vector U ' = Y ,  UIc, =Y~ u,c,/r,. 
If  one denotes by Pu the 'el l ipsoid radius along the 
vector u, then the vector pun is transformed into 
u' = puU' of  unit length. In consequence we can write 

1 / p 2 = Z  2 2 u, / r i .  ( C l )  
i 

Now, if u and v are a pair of unit vectors whose 
mutual angle is ~p, after transformation this angle 
becomes 

cos tp'= u ' .  v' = p,pv Y. u,v,/r 2. (C2) 
i 
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Abstract 

The X-ray two-wave diffraction on a dislocation wall 
perpendicular  to a crystal surface, consisting of  peri- 
odically arranged dislocations (low-angle twist 
boundary) ,  is considered in the case when the disloca- 
tion superlattice period is much less than the crystal 
extinction length. The formula obtained for the reflec- 
ted intensity is of the same form as that for an ideal 
crystal with a modified crystal structure factor. The 
superstructure factor of  a dislocation superlattice is 

calculated. The recurrence relations are p~oduced 
which enable a superstructure factor to be calculated 
for a satellite of any order and magnitude hb (b is 
the diffraction vector, b is the Burgers vector). 

1. Introduction 

The grain boundary (GB) is a surface between two 
m i s o r i e n t a t e d  single crystals. The dislocation struc- 
ture  of a GB is well known (Hirth & Lothe, 1968; 
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McLean, 1957). According to the existing model a 
pure twist boundary is formed by a net of two 
mutually perpendicular arrays of screw dislocations 
and is a two-dimensional superlattice (SL). A pure 
tilt boundary is formed by a periodic array of edge 
dislocations and is a one-dimensional SL. The dislo- 
cation SL period at small disorientation angles is 
defined as 

Zo~-b/AO (1) 

where b is the Burgers vector modulus and AO the 
angle of block misorientation. When AO < 10 ° the 
boundary is called a low-angle type and when AO > 
10 ° a high-angle type. Only the low-angle boundary 
is well described by the dislocation model since at 
larger disorientation angles, when the distance be- 
tween dislocations becomes of the order of a few b, 
the dislocation cores deform. Low-angle GBs are 
formed by crystal growth, plastic strain, polygoni- 
zation, epitaxial growth etc. 

The structure of GBs has been studied by electron 
microscopy [for a review see Amelinckx & Dekeyser 
(1959)]. If the pure twist or tilt boundary plane is 
parallel to the foil surface then the boundary image 
is a net or an array of dark lines, so that each line is 
identified with the individual dislocation image 
(Schober & Balluffi, 1969). This is a direct image of 
the GB. ThSlen (1970), by numerical integration of 
the Howie-Whelan equations, has shown that when 
the dislocation SL period is less than 0.3 of an extinc- 
tion length, then the net pattern is indistinguishable 
from the moir6 pattern. High-resolution electron 
microscopy was used to study [011] low-angle tilt 
boundaries in Ge (Bourret & Desseaux, 1979) and 
Al (Penisson & Bourret, 1979). For the study of the 
periodic structure of a GB, when the microscope 
image has small periodicity, diffraction techniques 
are useful [for a review see Sass (1980)]. 

when  an X-ray or electron wave is diffracted by a 
crystal a modulated wave with a period much exceed- 
ing the lattice parameter arises in the crystal, and a 
GB with a periodic structure serves as a diffraction 
grating for this modulated wave. As a result of such 
a diffraction, some satellites appear on X-ray and 
electron diffraction patterns in the vicinity of the main 
Bragg reflections. 

First, Spyridelis, Delavignette & Amelinckx (1967) 
and then Balluffi, Sass & Schober (1972) have pointed 
out that the GB dislocation network acts as a diffrac- 
tion grating. In the last decade electron and X-ray 
diffraction have been successfully used (a) to detect 
the periodic structure of low- and high-angle GBs 
(Sass, Tan & Balluffi, 1975; Carter, Donald & Sass, 
1979; Carter, FSll, Ast & Sass, 1981), (b) to study the 
relaxation effects in the GB (Erlings & Schapink, 
1979), (c) to estimate the GB thickness (Budai, 
Gaudig & Sass, 1979; Carter, Donald & Sass, 1980), 
and (d) to study the detailed atomic structure of GBs 

(Guan & Sass, 1973, 1979; Gaudig & Sass, 1979; 
Budai & Sass, 1982). 

In the present work the two-wave X-ray diffraction 
by a crystal containing a pure twist boundary perpen- 
dicular to the crystal surface is examined in the case 
when the dislocation SL period is much less than the 
crystal extinction length. In such a geometry the dis- 
placement function u(r) varies periodically with crys- 
tal depth, and falls off rapidly from both sides of the 
boundary. Also, the general approach to two-wave 
X-ray diffraction by a one-dimensional SL (Var- 
danyan, Manoukyan & Petrosyan, 1985) is briefly 
presented. Absorption is not taken into account. 

The obtained formulae are analyzed in paper II 
(Vardanyan & Petrosyan, 1987), where the twist 
boundary image plane-wave profiles are plotted as 
well. In paper III (in preparation), the formulae for 
the integrated intensities are obtained. 

2. General approach 

The characteristic features of X-ray diffraction by a 
SL is the presence of satellites around the principal 
maxima in X-ray diffraction patterns. At Zo,~A (Zo 
is the SL period and A the mean extinction length), 
the SL diffraction maxima directions are defined by 

gm=m/Zo; m=O,+l,..., (2) 

where ~ is the average over the SL period value of 
the local deviation s(z) from the Bragg condition: 

Since 

then 

z o 

~= Zo I f s (z)  dz. 
0 

s (z )=  s+d(hu)/dz, (3) 

~= s+ Zo~[hu(zo) - hu(O)], (4) 

where h is the diffraction vector, u(z) is the displace- 
ment field, and 

s=h(O-OB) (5) 

indicates the deviation from the Bragg condition in 
the case of an ideal crystal. At Zo ~ A within the limits 
of the mth satellite one may consider the SL as an 
ideal crystal with the modified structure factor 

Fhm = JMmlFh, (6) 

where Mm may be called the superstructure factor: 
zo 

Mm=zo 1 ~ dzexp[2,n'i(hu)+2"n'iSmZ] (7) 
o 

and 

Sm= Zol{m- [hu(zo) - hu(O)]}. (8) 
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Rm(s) = 

where 

The superstructure factor is the Fourier component 
of the function 

exp {2rri(hu) - 27ri[hu(z) - hu(0)]ZZol}, 

so that 
oo  

IMml-<l and ~ IMml2=l, (9) 
m = - o o  

as follows from the Parseval theorem. In this approxi- 
mation the angular separation of the adjacent satel- 
lites is constant, 

A = Zo 1. (10) 

Equation (7) suggests that the amplitude of a reflected 
wave from a SL cell is calculated in the kinematical 
approximation. Taking advantage of the dynamical 
expression for the ideal nonabsorbing crystal reflect- 
ance (James, 1948) and taking into account (6), within 
the mth satellite limits, for the SL reflectance, one 
may write 

sin 2 { 7rDA m~[ 1 + A 2 ( s - sin)2] 112 } 

l+a2m(s_sm)2 , ( 1 1 )  

Am=A/IMml (12) 
is the SL extinction length of the mth satellite, and 
D is the crystal thickness. 

From (1), the condition Zo'~ ,4 can be written as 

AO>> bA -~. (13) 

X 

b, ~ 

Z 

Fig. 1. Screw dislocation net on two-crystal interface. Diffraction 
planes correspond to y = constant; b and b~ are the Burgers 
vectors. 
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Fig. 2. The a ( Z )  dependence. Solid lines correspond to y > 0 and 
dashed lines to y < 0. 

For X-rays, ,4 is of the order 5-50 lxm so the condi- 
tion (13) means that AO~, 10-4-10 -5 rad. Thus, the 
present theory is valid if 10-4< AO < 10 -1 rad. 

3. Twist boundary displacement field 

Consider a set of two crystal blocks with the lattices 
turned with respect to each other by an angle AO as 
shown in Fig. 1. The GB is of a twist type, and 
according to the dislocation model is composed of a 
net of two mutually perpendicular arrays of screw 
dislocations, so that in a given array the dislocations 
have the same Burgers vectors. The diffraction planes 
are those with y = constant. Since (hb~) = 0, the array 
of dislocations perpendicular to the surface is 
invisible. 

The displacement field of the j th screw dislocation 
in an infinite medium is of the form (Hirth & Lothe, 
1968) 

Uxs = (27r)-lb arc tan [(z +jzo)y -1] 
(14) 

urj= Uzj=O. 

In the present work the surface relaxation effect is 
neglected. Summing the single dislocation contribu- 
tions, for the phase term a = 2w(hu) of a dislocation 
wall we get (Proudnikov, Brychkov & Marichev, 
1981) 

o o  

a=27rh  ~ Uxj 
j = - o o  

= - n  arctan[tanh(~rlYI)  cot(TrZ)], (15) 
where 

Y = y / z o ;  Z = z / z o  (16) 

are the normalized coordinates and 

n =(hb) sign y. (17) 

An analogous expression was obtained by Thrlen 
(1970) in the case when the boundary is parallel to 
the crystal surface. The plot of the periodic function 
a ( Z )  is shown in Fig. 2. 

As seen from (13), the boundary plane y = 0 is a 
SL of stacking faults with the phase factor 7rn.* 

On both sides of the boundary the a ( Z )  period 
remains constant, but the strain amplitude exponen- 
tially decreases, so the effective thickness of the dislo- 
cation wall is of the order of the SL period. Thus, 
the displacement field of the dislocation wall is a 
short-range one, since the single dislocation contribu- 
tions partially compensate each other. Far from the 
boundary the phase term within the SL period is 

* It should be noted that the X-ray diffraction by SL of  stacking 
faults is considered by Vardanyan & Manoukyan (1982, 1983) in 
the Bragg case and Vardanyan & Manoukyan (1985) in the Laue 
case, without the restriction Zo'~ ,4. 
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linear with Z:  

ol( Z)  = "n'n( Z - ll -½), (18) 

where 11 is an integer and 11 < Z < 11 + 1. 
Expression (18) means that the blocks are turned 

with respect to each other by the angle 

AO = (,n'hzo) -~ dot /dZ = b/ zo 

in accordance with (1). 

4. The dislocation SL superstructure factor 

Substituting (15) into (8), we find the diffraction 
maxima directions 

st = Z o ' ( m -  n/2 )= l/2zo, (19) 

where l = 2m - n. Since the dislocations are full ones, 
then n is an integer and I and n are of the same parity. 

Substituting (15) and (19) into (7) and replacing 
the integration variable z by Z, we obtain* 

1 
Mr.. = ~ d Z  exp { - in  arc tan [tanh (~1 YI) cot (TrZ)] 

o 

+ iTrlZ}. (20) 

In Appendix A two useful relations are derived: 

Mt.,.=(-1)tM_,._.,  (21) 

IMI. .-  nM,,.,=O, (22) 

which enable one to restrict the consideration to 
values of 1_> n. The integral (20) is calculated in 
Appendix A and has the form 

F(I/2)q( t-')/4 
Mr.,. = ( - i ) "  

F ( n / 2 ) F [ ( l - n / 2 ) +  1] 

( n l l - n  ) 
x F  - ~ , ~ ;  ~ + l ; q  , (23) 

where 

q = exp (-4~rl YI), (24) 

F(x)  is the gamma function and F(a, b; c; x) the 
Gauss hypergeometric function. 

At l - n, Mr,. may be calculated from (22) and (23). 
Using the general formula (23), we get: 

(a) a t / = 0 ,  

Mo.,. = qlnl/4; (25a) 

(b) at l = 2 k > 0  and n = 2 r > 0 ,  

M2k,2r=(--1)r(1--q)q(k--r)/2p~k-~r")(1--2q); (25b) 

(c) at l = 2 k > 0  and n = - 2 r < 0 ,  

M2k,_2r -" 0;  (25c) 

* Hereafter we write Mr,. instead of  Mz. The first subscript 
indicates the diffraction maximum number, the second one being 
the value of  hb sign y. 

(d) at l = 2 k - 1  and n = 2 r - l > 0 ,  

F(k-½)q(k-*)/2 
M2k- l , 2 r -1 - - i  r ( r _ ½ ) r ( k _ r +  1) 

x F(-r+½, k-½; - r +  k + l; q); (25d) 

(e) at l = 2 k - l > 0  and n = l - 2 r < 0 ,  

M2k-1 1-2r = - - i ' t r -  1 F ( k - ½ ) F ( r + ½ )  (k+r-1)/2 
• r ( k + r )  q 

x F(r-½,  k-½; k + r; q); (25e) 

where P~'~'a)(x) are the Jacobi polynomials, k and r 
are positive integers. 

In Appendix A the other representation of Mr,. are 
given. 

It should be noted that (25) are not convenient for 
computation of Mr,. at large l and n. Therefore, in 
Appendix B we suggest a rational technique for Ms,. 
computation based on recurrence relations. 

APPENDIX A 

Evaluation of the integral (20) 

To integrate the expression 
1 

M,.. = ~ d Z  exp { - in  arc tan [tanh (~r[ YI) cot (TrZ)] 
o 

+ i'n'lZ} (A1) 

we make use of the relation 

arc tan u = - ( i / 2 )  In [ (1 + iu)/(1 - iu) ], 

which reduces (A1) to the form 

1 
Mr,,, = J [sin "n'( Z + il Yl) ]n/2[sin "tr( Z -  il Y[) ] - ' /2 

o 

x exp (i,n'lZ). (A2) 

The substitution of 

w = q-1/2 exp (2~riZ), (A3) 
where 

q = exp (-4~rl Y[), (34)  

transforms (A2) into an integral on the w complex 
plane: 

Mo.=(2~ri)- lq ('-")/4 ~ ( 1 - q w )  n/2 
C 

>((1--W)-n/2W -1+1/2 dw, (A5) 

where the contour C is a circle of radius q-1/2 (Fig. 3). 
We show that the following relation holds: 

lM~,,, - nM.,t = O. (36)  

To do that we integrate (A5) by parts: 

Mt,.=(2"tri)-l(n/l)q (1-')/4 ~ (1--qw) -1+n/2 
C 

x (1 - w)'-"/2wU2 d[ (1 - qw)/(1 - w)], 
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and making the substitution of variable 

u=(1-qw)(1-w)-~q  -~, 

which maps the contour C onto itself, we obtain 

Ml,,,=-(2'n'i)-l(n/l)q ("-t)/4 ~ (1-qu) t/2 
C 

x (1 - u)-t/2u -1+'/2 du 

whence (A6) follows. 
The substitution of the variable Z by ( l - Z )  in 

(A1) leads to the following relation: 

M~,.=(-1)'M_t,_.. (A7) 

At an even positive n the integrand in (A5) has the 
first-order pole w~ = 0 at l = 0 and the pole of order 
Inl/2 with w2 = q-~. Since q <  1, then WE is beyond 
the circle of radius q-1/2 and does not contribute to 
the integral. Therefore, for such n and l > 0 we get 
M~.. = 0. 

The integral (A5) is expressed in terms of the Gauss 
hypergeometric function (Bateman & Erdelyi, 1953): 

F(a,b; c;x) 1+ ab a(a+l )b(b+l )x2+ 
= - - x - ~  . . .  

c l x 2 x c ( c + l )  

and at l-> n has the form 

r(l /2) 
M,,, = ( - i )  '~ 

r(n/2)r[1 +(l-n)~2] 

xqt_, /4F( n l ( l - n ) )  - ~ ,  ~; 1 - t - -~ - - - ;  q . (A8) 

From (A6) and (A8) at 1 -  < n we have 

Mr., = (_i)  t F(n/2+ 1)q ("-°/4 
F(I/2+ 1)F[1 +(n-l)~2] 

( I n n - l )  
x F  2 '2 '  2 ~-l;q . (A9) 

At l =  0, from (A9) we get 

Mo, n _. qlnl/4. (A10) 

At l = 2k > 0 and n = 2r > 0 the hypergeometric series 
is cut off, and from (A8) we get 

_'~ r j ( k - -  r , 1 ) /  
MEk,  Er : (--1)'q(k-O/2(1 -- ttJrr-1 1,1 --2q) ( A l l a )  

= q ( k - ° / 2 ( q - 1 ) ~ ( - 1 ) '  k - 1  r 
i=o i r - l - i  

x (1 -q) iq  "-~-' ( A l l b )  

where p(.~,t3)(x) are the Jacobi polynomials and ( m ) 
are the binomial coefficients. 

At l = 2k > 0 and n = - 2 r  < 0 we obtain 

M2k,_2r -" 0 (A12) 

since [ F ( - r ) ] - t  = 0. 

At l = 2 k - l > 0  and n = 2 r - l > 0 ,  we find 

r(k-½) 
M2k-"2r-'=--i F ( r -½)F(k - r+  1) qCk-r)/2 

x F ( - r + ½ ,  k-½; k - r + 1 ;  q) 
• q(r-k)/2(1 _ q)l/2 

=-'  r(~-½)r(k +½) 

(A13a) 

d r - - I  

r k-lz 1 X-T-'~_~t q ~ --q)r-lBk-~]. (A13b) 
c l q  

where 

A t / = 2 k - l > 0 a n d  n = l - 2 r < 0 ,  

.r(k-½)r(r+½) q(k.r-,)/2 
M 2 k - l ' l - 2 r  : - - !  ¢rF( k + r) 

x F(r - l ,  k-½; k + r; q) (A14a) 

• 2q(k+r-1)/2(1 _ q)3/2 
~ - - - - - |  

r(~-½)r(k+½) 
d r 

x [(1 r-,  dqr -q) Bk-,] ,  ( A l 4 b )  

Bk=dk[(1-q)k-~/2E(q)]/dq k (A15) 

and E(q) is the complete elliptic integral of the 
second kind (see Appendix B). 

In obtaining (A13b) and (A14b) we made use of 
formulae for derivatives of the hypergeometric func- 
tion (Abramowitz & Stegun, 1964). 

APPENDIX B 

Recurrence relations for Mz,. 

Using the relations between functions contiguous to 
F(a, b; c; x) (Abramowitz & Stegun, 1964), namely, 

xb(c-  a)F(a, b + 1; c+  1; x) 

+c(c-1)F(a,  b - l ;  c - l ;  x) 

- c [ c - l + x ( b - a ) ] F ( a , b ;  c ; x ) = 0  (B1) 

and (A8), for a fixed n we obtain the following 
recurrence relation: 

( l+  2) M,+2,, +.(1-2)M,_2,, 

- [ l -n+q( l+n)]q-~/2Mt ,=O.  (B2) 

® 

0¢ q 1/2 

Fig. 3. The integration contour in the w plane. 
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For a fixed I the recurrence relation is of  the form 

nMt,,,+z + nMt,,,-2 + [ l - n - q( l + n ) ] q-X/2Mt,. = 0. 

(B3) 

For even I and n from (A12) we have M~n = 0 if nl < O. 
The relation (B2) with the initial values 

Mo,. = qlnl/4, (B4) 

M-2,.  = 0  (B5) 

enables one to find Mr,, for even values of  l and n. 
For example,  at l - 2 ,  from (B2), (B4) and (B5) 

we have 

M2.n = ½nq~"-2)/4( q - 1 ). (B6) 

In the same way, at l = 4, 

M 4 , , , = ~ n ( q - 1 ) [ q ( n + E ) - n + E ] q  <'-4)/4. (B7) 

For odd l and n the initial values are 

M1,1= - M _ z , _ l  = 2~'-1E, (B8)  

M I , _ ~ = - M _ ~ , ~ = 2 w - l q - ~ / 2 [ E - ( 1 - q ) K ] ,  (B9) 

where 

~ 2 _ ~)-~/2 
K--(w/2)F(½,½; 1; q)--  (1 qs in  2 d~  

o 

E =(Tr/2)F(-½,½; 1; q ) =  ~2  ( 1 - q  sin 2 q~)l/2 d~  
o 

are the complete elliptic integrals of  the first and 
second kinds, respectively. 

For example, using (B2) and (B3) one may obtain 

M 3 , 1 = ( E ~ ) q - ~ / 2 [ E ( l + 2 q ) - K . ( 1 - q ) ] ,  (B10) 

M 3 _ l = ( 2 ~ ) q - ~ [ E ( E - q ) - 2 K ( 1 - q ) ] .  ( B l l )  

The recurrence relations (B2) and (B3) are 
especially valuable in computing. In this case the 
complete elliptic integrals K and E can be approxi- 
mated by polynomials (Abramowitz & Stegun, t964). 
The recurrence procedure is stable if the errors do 
not increase. But, if the relative error increases, and 
it can even exceed the sought function magnitude 
(e.g. at small q), the process is unstable. In this case 

one may use the Miller algorithm, in whicla the recur- 
rence process is carried out in the reverse direction. 
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